Fragile topological band in the checkerboard antiferromagnetic monolayer FeSe

نویسندگان

چکیده

Abstract By means of the first-principles calculations and magnetic topological quantum chemistry, we demonstrate that low-energy physics in checkerboard antiferromagnetic (AFM) monolayer FeSe, very close to an AFM insulator hosts robust edge states, can be well captured by a double-degenerate nearly flat band with fragile topology just below Fermi level. The Wilson loop identify such is protected S 4 z symmetry, which gives rise 2D second-order supports bound state fractional charge e /2 at sample corner. This work provides platform study intriguing properties electronic states. Previous observations states FeSe also understood our work.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiferromagnetic FeSe monolayer on SrTiO3: The charge doping and electric field effects

By growing monolayer FeSe on SrTiO3(001) surface, researchers obtain the highest superconducting transition-temperature for iron-based superconductor. Here, we study the antiferromagnetic (AFM) checkerboard monolayer FeSe adsorbed on SrTiO3(001) surface. We show that the system has a considerable charge transfer from SrTiO3(001) substrate to FeSe monolayer, and so has a self-constructed electri...

متن کامل

Exploring the fragile antiferromagnetic superconducting phase in CeCoIn5.

CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order develops on the high-field s...

متن کامل

Topological superconductivity in monolayer transition metal dichalcogenides

Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as c...

متن کامل

Chiral topological excitons in the monolayer transition metal dichalcogenides

We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of th...

متن کامل

Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer

The origin of enhanced superconductivity over 50 K in the recently discovered FeSe monolayer films grown on SrTiO3 (STO), as compared to 8 K in bulk FeSe, is intensely debated. As with the ferrochalcogenides AxFe2-ySe2 and potassium-doped FeSe, which also have a relatively high-superconducting critical temperature (Tc), the Fermi surface (FS) of the FeSe/STO monolayer films is free of hole-like...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: npj computational materials

سال: 2022

ISSN: ['2057-3960']

DOI: https://doi.org/10.1038/s41524-022-00707-9